8 – Feature Detection

Prof Peter YK Cheung

Dyson School of Design Engineering

URL: www.ee.ic.ac.uk/pcheung/teaching/DE4_DVS/ E-mail: p.cheung@imperial.ac.uk

What is meant by "discontinuity"?

- Discontinuity in intensity is normally identified by the 1st order and 2nd order derivatives (lecture 5 slides 13, 14).
- We use central difference to compute the 1st order derivative as:

$$\frac{\partial f(x)}{\partial x} = f'(x) = \frac{f(x+1) - f(x-1)}{2}$$

• The 2nd order derivative is given by:

$$\frac{\partial f^2(x)}{\partial x^2} = f''(x) = f(x+1) - 2f(x) + f(x-1)$$

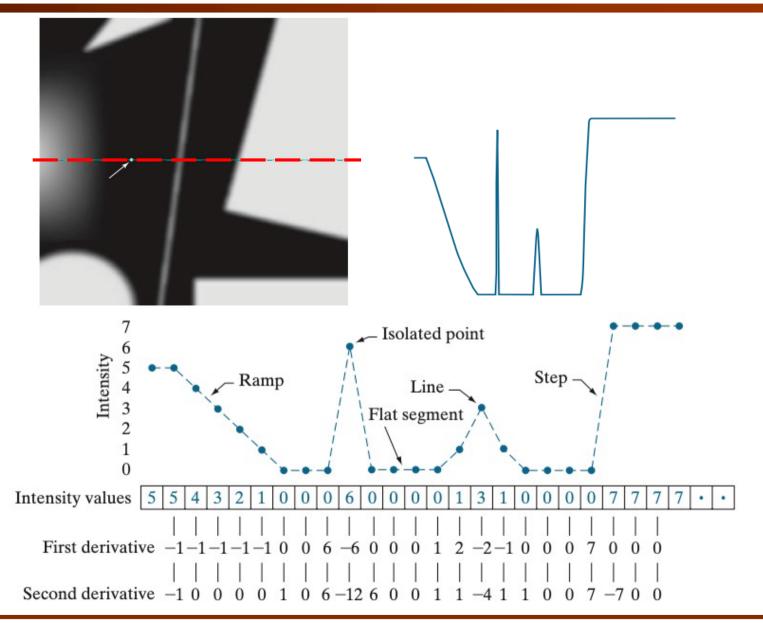
• We rarely use 3rd order derivatives. Nevertheless, here it is just for information: $\frac{\partial f^3(x)}{\partial x^3} = f'''(x) = \frac{f(x+2) - 2f(x+1) + 2f(x-1) - f(x-2)}{2}$

Digital Derivatives - coefficients

 To generalise, here is a table of the first four central digital derivatives coefficients:

	f(x+2)	f(x+1)	f(x)	f(x-1)	f(x-2)
2f'(x)		1	0	-1	
$f^{\prime\prime}(x)$		1	-2	1	
$2f^{\prime\prime\prime}(x)$	1	-2	0	2	-1
$f^{\prime\prime\prime\prime\prime}(x)$	1	-4	6	-4	1

Cross section of an image & derivatives



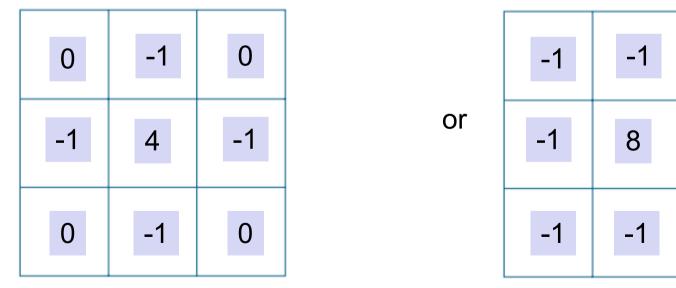
Detection of Isolated point

 The obvious approach is to perform spatial filtering with a kernel that compute the 2nd order derivative (also called the Laplacian):

$$\nabla^2 f(x, y) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

= $f(x + 1, y) + f(x - 1, y) + f(x, y + 1) + f(x, y - 1) - 4f(x, y)$

 This is equivalent to performing convolution with the filter kernel, but negate the output:

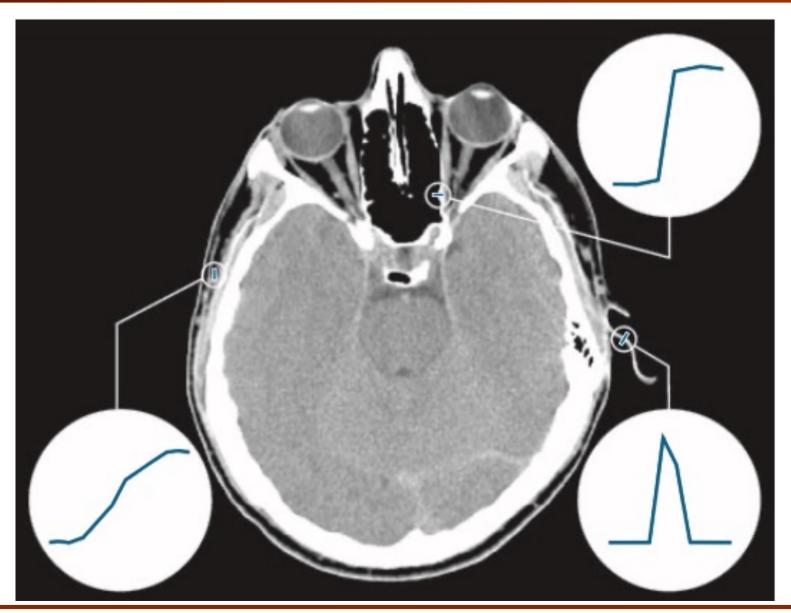


-1

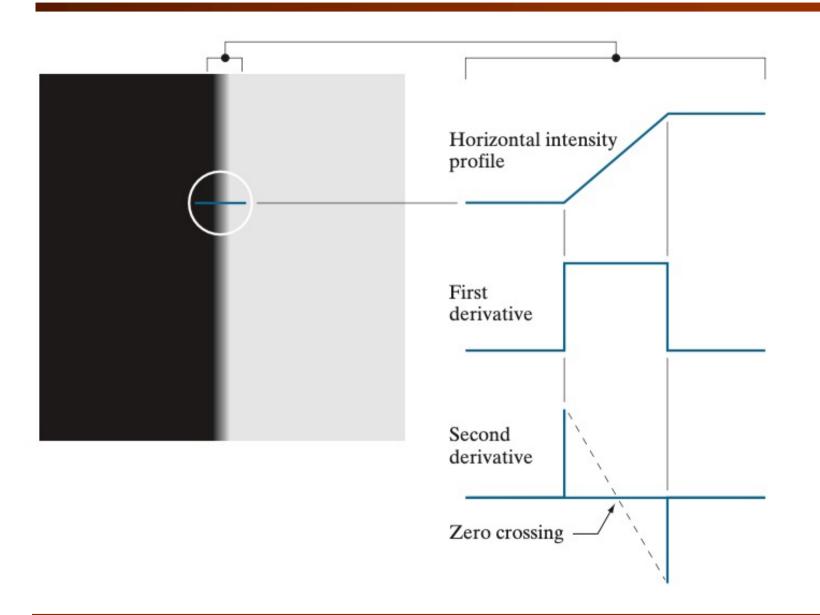
-1

-1

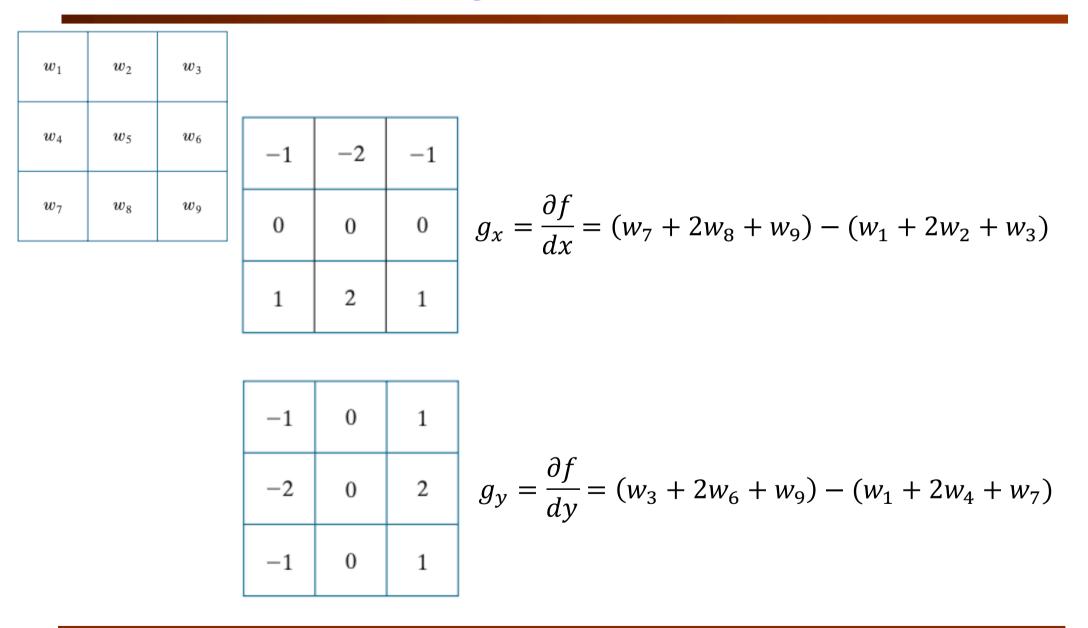
Three types of edges



Edge detection using derivatives



Sobel Edge detector kernels



Laplacian of a Gaussian (LoG) edge detector (1)

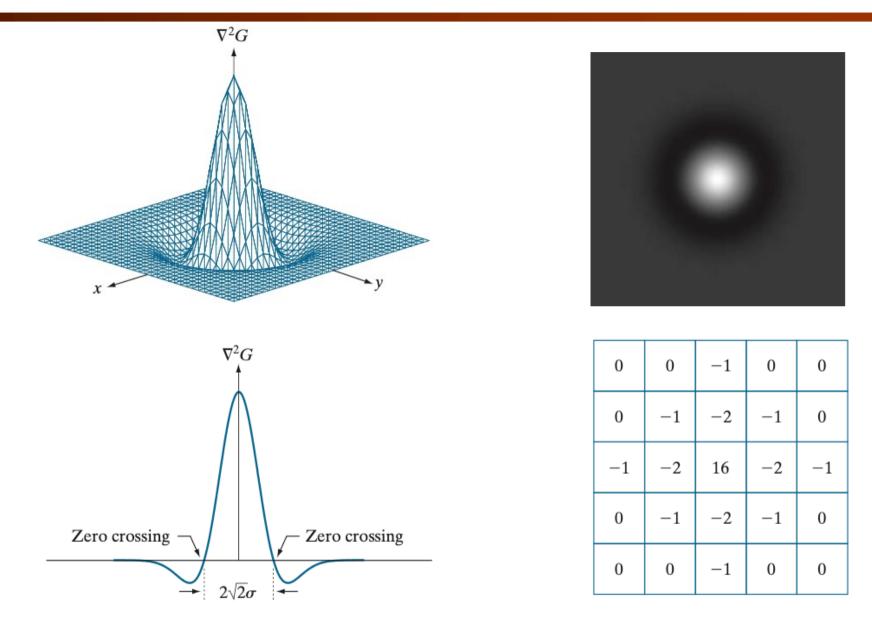
- Marr-Hildreth proposed an edge detector which is has two properties:
 - 1. Compute 1st or 2nd derivative at every point in the image
 - 2. Capable of being "tuned" to any scale or size
- The operator they proposed is the Laplacian (or 2nd derivative) of a Gaussian function.
- A 2D Gaussian function is defined as:

$$G(x,y) = e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

• The Laplacian of a Gaussian (LoG) is defined as:

$$\nabla^2 G(x, y) = \left(\frac{x^2 + y^2 - 2\sigma^2}{\sigma^4}\right) e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

Laplacian of a Gaussian (LoG) edge detector (2)



Steps of the LoG algorithm

- The LoG algorithm includes these steps:
- 1. Convolving the LoG kernel with the image: $g(x, y) = [\nabla^2 G(x, y)] \star f(x, y)$.
- 2. Find the zero crossing of g(x, y) to find the locations of edges in f(x, y)
- Since both the Laplacian and convolution operations are linear, we get: $g(x,y) = [\nabla^2 G(x,y)] \star f(x,y) = \nabla^2 [G(x,y) \star f(x,y)]$
- This implies that we can achieve the same results by:
- 1. Smooth the image with a Gaussian filter using convolution.
- 2. Compute the Laplacian of the results.
- 3. Find the zero crossing of the output of the Laplacian.

Example of using LoG for edge detection



PYKC 18 Feb 2025

DE4 – Design of Visual Systems

Lecture 8 Slide 12

The Canny Edge Detector

- The Canny edge detector is based on three objectives:
 - 1. Low error rate: find all edges with no false and spurious results.
 - 2. Well localized edge points: location of edge points actually on edges.
 - 3. Single edge point response: return only one point for each true edge point.
- To achieve these objectives, Canny detector applies five steps:
 - 1. Apply Gaussian filter to smooth the image, thus removing noise.
 - 2. Find the intensity gradients of the filter image (i.e. 1st derivative), including both the **gradient magnitude** and **direction**.
 - 3. Apply **non-maximum suppression** to thin the edges.
 - 4. Apply **double threshold** to determine potential edges.
 - 5. Using **hysteresis method**, follow the strong edge points to produce the final definitive edge.

Canny Detector – Step 2: Gradient Magnitude & Direction

- Step 1: The Filtering the image f(x, y) with a Gaussian filter is similar to that of LoG edge detector. It removes noise from the image.
- Step 2: Compute the gradient at each pixel. Need to compute BOTH magnitude and direction:

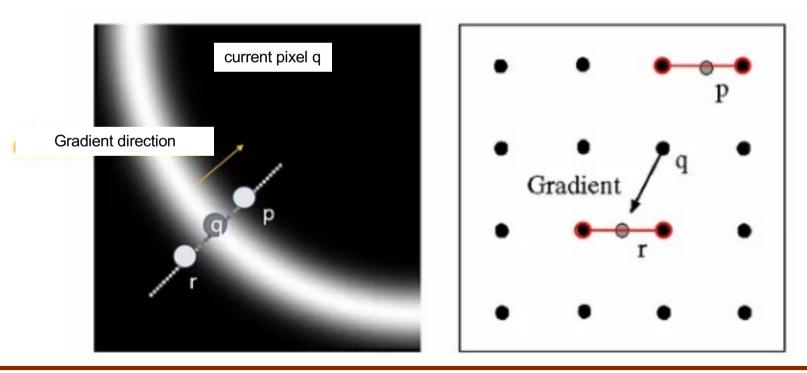
$$M_s(x,y) = \sqrt{\left(\frac{\partial f_s(x)}{\partial x}\right)^2 + \left(\frac{\partial f_s(y)}{\partial y}\right)^2}$$

$$\alpha(x,y) = \tan^{-1} \left[\frac{\partial f_s(y) / \partial y}{\partial f_s(x) / \partial x} \right]$$

 Angle quantized to one of four directions: horizontal (0°), vertical (90°) and the two diagonals (45°, 135°).

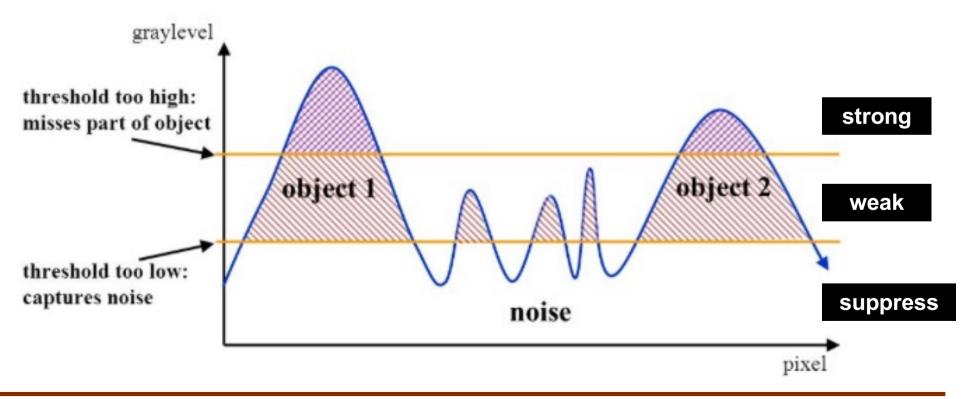
Canny Detector – Step 3: Non-Maximum Suppression

- Step 3 of Canny is to use an edge thinning method to combat the smoothing effect of Gaussian smoothing.
 - 1. Compare intensity at q with neighbours along gradient direction p and r.
 - 2. Since q is maximum, set p and r to zero.
 - 3. Repeat for all pixels.



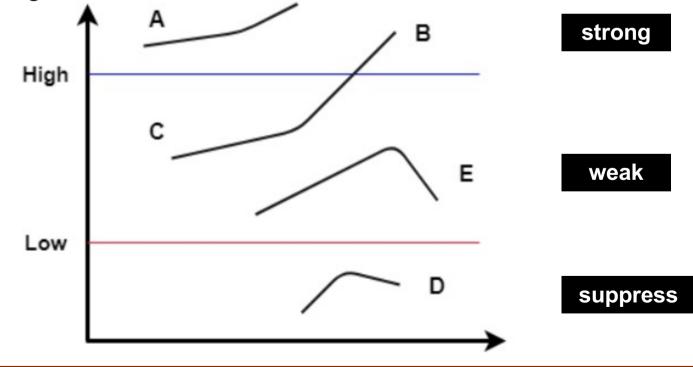
Canny Detector – Steps 4: Double thresholding

- Noise can produce false edges even after Step 3.
- Use higher and lower thresholds to categorize each pixel.
- Gradient magnitude > high threshold \rightarrow strong pixel.
- Low threshold \leq Gradient magnitude \leq high threshold \rightarrow weak pixel.
- Gradient magnitude < low threshold \rightarrow suppress pixel.

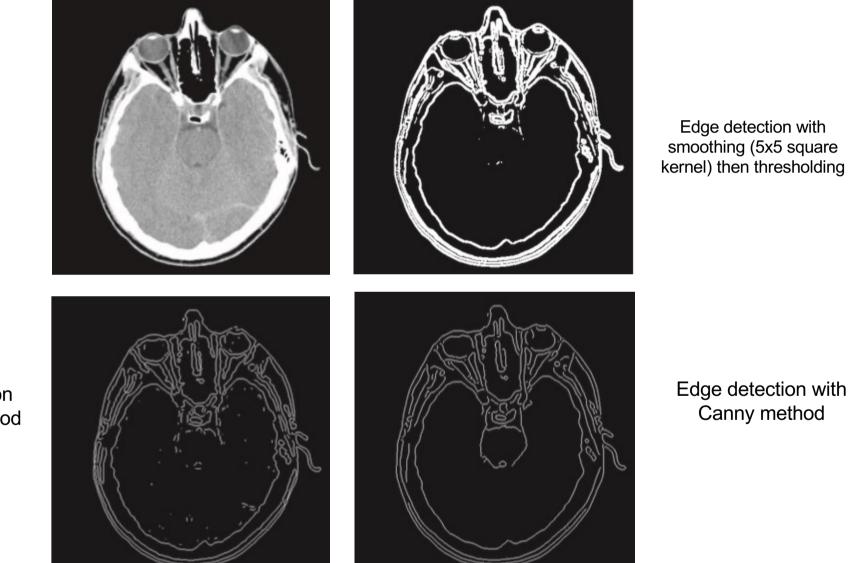


Canny Detector – Steps 5: Edge tracking by Hysteresis

- Finally, edge is tracked by its neighbourhood connections (hysteresis).
- A pixels are all strong. So A must be an edge.
- D pixels are all suppressed and therefore are not considered in Step 5.
- E pixels are all weak and none of their neighbours are strong suppress.
- B is strong, but C is weak. However, C pixels are neighbour to strong, so reclassified as strong.



Compare Canny with other edge detection methods



f(x,y)

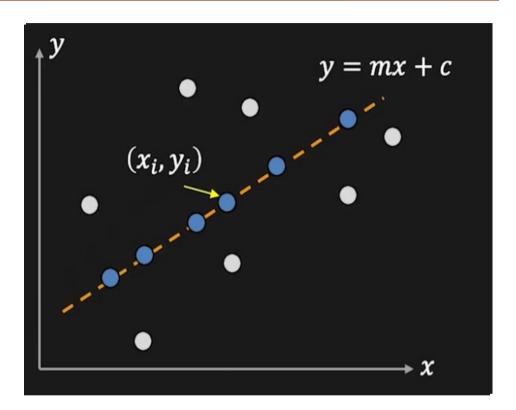
Edge detection with LoG method

Comparison of Edge detection methods

Method	Pros	Cons
Sobel	Simple; detect edges and the orientations	Sensitive to noise; inaccurate
Laplacian + zero crossing	Detect edges and direction; isotropic	Sensitive to noise; interaction between nearby edges
Laplacian of Gaussian (LoG)	Correct places of edges; handle different areas and scales	Malfunction at curves and corners; cannot find orientations
Canny	Low error rate; good localization; accurate; not sensitive to noise	More complex; sometimes produce false zero crossings

The Hough Transform – Basic Idea

- Previous method detected edge points (x_i, y_i) as shown here.
- How to detect line y = mx + c?

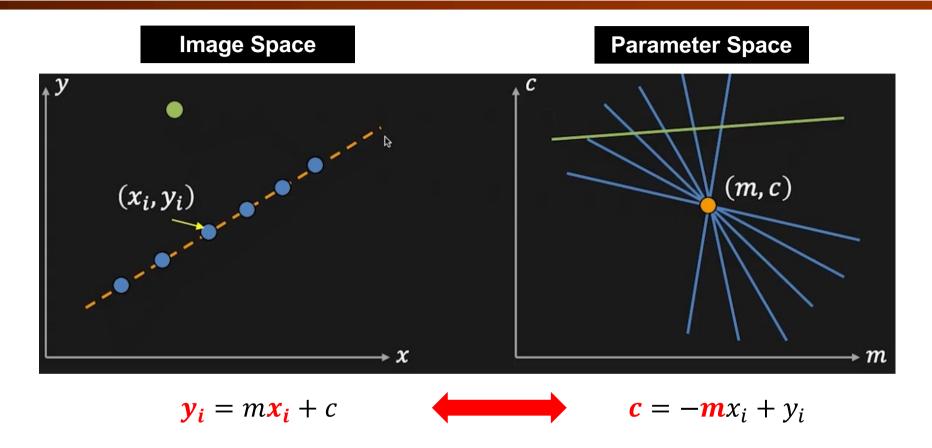


Consider the point (x_i, y_i). Its equation is given by:

$$y_i = mx_i + c$$

Parameter space $c = -mx_i + y_i$

The Hough Transform – Image Space vs Parameter Space



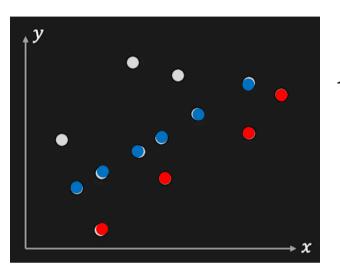
- All lines through edge point (x_i, y_i) maps onto the blue line in the parameter space.
- Another point on the line in image space maps to another line in the parameter space but intersect at the same (m, c) values.
- Now map a few more points on the edge line, will result in same intersection.

The Hough Transform – Line Detection Algorithm

- Step 1: Quantize parameter space (m, c).
- Step 2: Create a counting array H(m, c).
- Step 3: Set H(m, c) = 0 for all (m, c).
- Step 4: For each **edge point** (x_i, y_i) H(m, c) = H(m, c) + 1

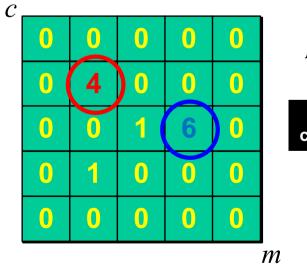
So for all points on the straight line, this increase the count at (m, c).

• Step 5: Identify the local maxima in H(m, c).



f(x,y)

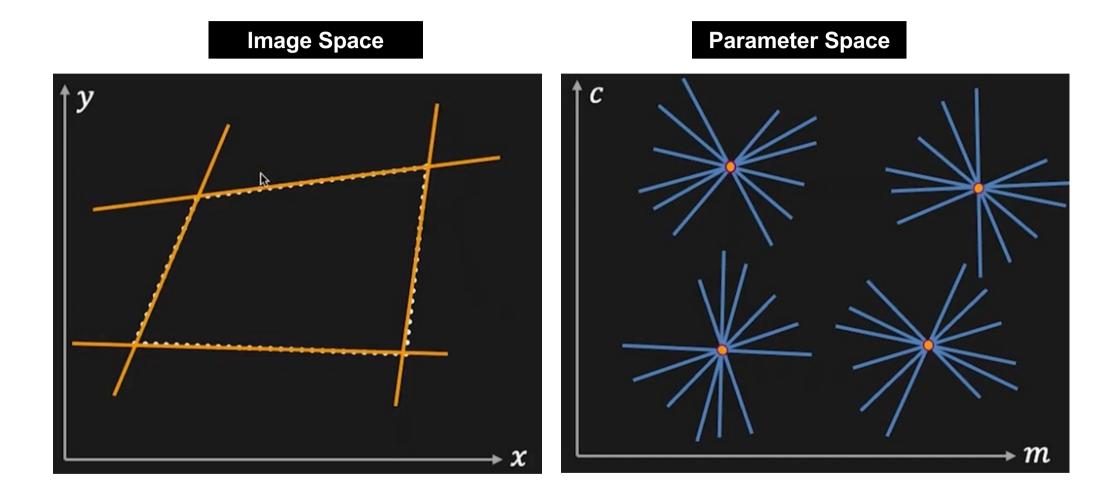
image



H(m,c)

Parameter counting bins

The Hough Transform – Multiple line detection



The Hough Transform – Better Parameters

Problem with using (m, c) parameter space. \blacklozenge

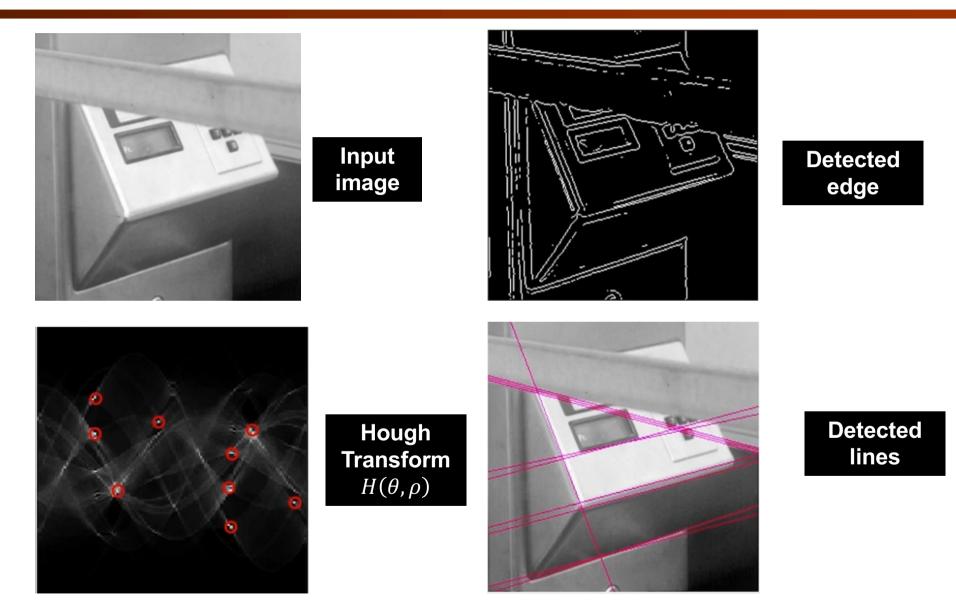
Instead use a different equation for a line: Range of slope of line is huge: $x\sin\theta + y\cos\theta + \rho = 0$ $-\infty < m < \infty$ The orientation θ is finite: $0 \le \theta \le \pi$ Not viable for limited size of counting array. The distance ρ from origin is also finite. **Parameter Space Image Space** y (x_i, y_i) $\theta + \pi$ θ A θ X $x\sin\theta + y\cos\theta + \rho = 0$ $x\sin\theta + y\cos\theta + \rho = 0$

Solution: do not map line to y = mx + c

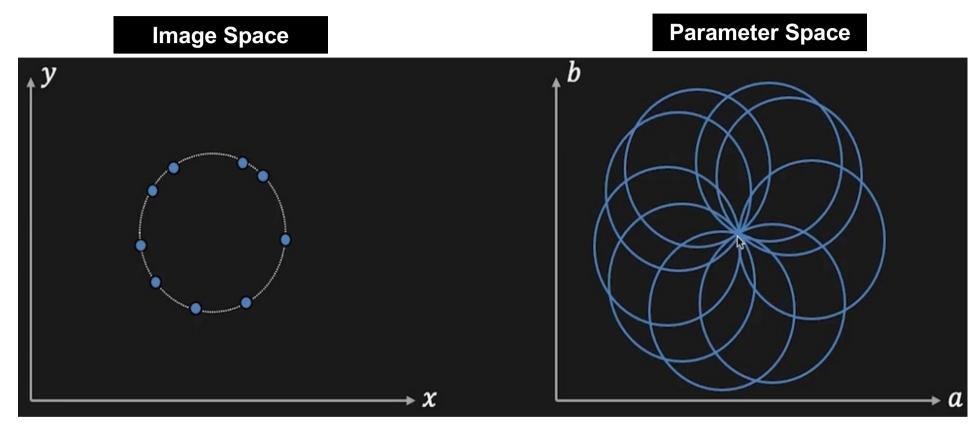
The Hough Transform – Design consideration

- What is the dimension of the parameter counting array?
 - Too many bins, noise will cause lines to be missed.
 - Too few bins, different lines will merge together.
- How many lines?
 - Count the peaks in the array (thresholding),
- How to handle inaccurate edge locations?
 - Increment nearby bins instead of just individual bins.

Example of Hough Transform in line detection



Hough Transform: Detection of Circle (known r)



$$(x_i - a)^2 + (y_i - b)^2 = r^2$$

(a - x_i)² + (b - y_i)² = r²

- For circle of known radius, and a give point (x_i, y_i) .
- All circles through this point maps to a circle in the parameter space.
- The intersection of all edge points gives the parameter (a, b).

Hough Transform: Circle detection example

